Hello,
I just did two run of scvi with our without covariate. Below is the codes I used.
Without covariates :
scvi.model.SCVI.setup_anndata(sco, layer = ‘raw_counts’)
norm = scvi.model.SCVI(sco)
norm.train()
sco.obsm[‘norm_scVI’] = norm.get_latent_representation()
sco.layers[‘scvi_normalized’] = norm.get_normalized_expression()
sc.pp.scale(sco, zero_center=False, layer=‘scvi_normalized’)
and with covariates :
scvi.model.SCVI.setup_anndata(sco, layer = ‘raw_counts’,categorical_covariate_keys=[‘infection’, ‘timepoint’])
corr = scvi.model.SCVI(sco)
corr.train()
sco.obsm[‘integrated_scVI’] = corr.get_latent_representation()
sco.layers[‘scvi_integrated’] = corr.get_normalized_expression(library_size = 1e4)
sc.pp.scale(sco, zero_center=False, layer=‘scvi_integrated’)
Of course, the results are different and the umap I can generate also.
I just want to wich one do you think will be the best approximation of the reality ? And thus which one I should use for further analysis ?
Best regards
Lionel